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The energy of unit vector fields on the 3-sphere
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Abstract

The stability of the three-dimensional Hopf vector field, as a harmonic section of the unit tangent
bundle is viewed from a number of different angles. The spectrum of the vertical Jacobi operator
is computed, and compared with that of the Jacobi operator of the identity map on the 3-sphere.
The variational behaviour of the three-dimensional Hopf vector field is compared and contrasted
with that of the closely related Hopf map. Finally, it is shown that the Hopf vector fields are the
unique global minima of the energy functional restricted to unit vector fields on the 3-sphere.
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1. Introduction

A smooth unit vector fieldσ on a compact Riemannian manifold(M, g) with Euler
characteristic zero may be regarded as a smooth mapping of Riemannian manifoldsσ :
(M, g) → (UM, h), whereUM is the unit tangent bundle andh is the restriction of the
Sasaki metric on the tangent bundleTM. The energy ofσ may be defined accordingly. Since
metricsh andg are horizontally isometric, andσ is a section, it suffices to consider the
vertical energy functional:

Ev(σ ) =
∫
M

| dvσ |2 dx, (1.1)

where dvσ is the vertical component of the differential dσ . (Here, ‘horizontal’ and ‘vertical’
refer to the complementary distributions onTMdefined by the Levi–Civita connection.) One
says thatσ is a critical point ofEv, or aharmonic sectionof UM, if Ev is stationary at
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σ with respect to variations through unit vector fields. The (non-linear) Euler–Lagrange
equations for this variational problem are [17]

∇∗∇σ − |∇σ |2σ = 0, (1.2)

where∇∗∇ is thetrace(or rough) Laplacian:

∇∗∇σ = −Tr∇2σ.

Further, one says that a harmonic sectionσ is Ev-stableif the second variation ofEv at
σ with respect to unit vector fields is non-negative. The second variation ofEv in this
constrained sense may be regarded as a quadratic formHv

σ (the vertical Hessian) on the
spaceVσ of appropriate variation fields; sinceσ is allowed to vary only through unit vector
fields,Vσ is the space of smooth vector fields onM which are pointwise orthogonal toσ .
Associated toHv

σ is thevertical Jacobi operatorJ v
σ :

Hv
σ (α, β) =

∫
M

〈J v
σ (α), β〉 dx for all α, β ∈ Vσ . (1.3)

(Diamond brackets denote the relevant Riemannian metric, in this caseg.) Explicit com-
putation (see [17]) shows thatJ v

σ is the following symmetric, elliptic linear second-order
partial differential operator onVσ :

J v
σ (α) = ∇∗∇α − |∇σ |2α − 2〈∇σ,∇α〉σ. (1.4)

Thus,J v
σ may be viewed as a twisted version of the conventional Jacobi operator for a

sphere-valued harmonic map [14]; indeed, since everything mentioned so far is in fact true
for unit sectionsσ of any Riemannian vector bundle, this constitutes a complete general-
ization of the theory of harmonic maps into spheres. There is a unique extension ofJ v

σ to
a self-adjoint linear operator on the Hilbert space ofL2 variation fields ofσ .

Thecanonical Hopf vector fieldonM = S2n+1 (n = 0,1,2, . . .) is defined:

σ(x) = ix, x ∈ R2n+2 ∼= Cn+1, |x| = 1, (1.5)

where i = √−1. More generally, any unit vector field congruent toσ will be called a
Hopf vector field. It is known that in all dimensionsσ is a harmonic section, and ifn =
2,3, . . ., thenσ isEv-unstable (see [17]). This comes as no surprise, in view of Xin’s [19]
instability theorem for harmonic mappings from spheres. More surprising is the fact that
the three-dimensional Hopf vector field isEv-stable [18]. In this paper, we take a closer
look atJ v

σ whenσ is the three-dimensional Hopf vector field, confirming its non-negativity
in a number of different ways. In Section 2 we make the interesting observation that the
non-negativity ofJ v

σ is purely a consequence of dimension and curvature, and the fact
thatσ has geodesic integral curves; the Lie group structure ofS3 is in fact only incidental
(although it was used in [18]). Our primary aim in Section 2, however, is to compute the
(necessarily discrete) spectrum ofJ v

σ , along with the eigenvalue multiplicities (Theorem
2.3). It is interesting to compare these spectral data with those of the Jacobi operator of the
identity map id onS3; for, the HessianH of the latter is related toHv

σ by the restriction:

Hv
σ = H(Vσ ,Vσ ).
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Recall that the space of variation fields for id is the entire Lie algebra of vector fields on
S3; of course, since id isE-unstable,H is indefinite. Thus, we have a rather nice example
illustrating how a ‘simple’ change of domain can dramatically alter the spectrum (see also
Remark 2.4). In addition to this close relationship between the variational aspects ofσ and
id, there is also a strong linkage betweenσ and anotherE-unstable harmonic map: the
Hopf mapϕ : S3 → S2. At first sight (see Proposition 3.1) this link seems so compelling
that one is tempted to infer that the variational properties ofσ must surely be the same as
those ofϕ. In Section 3, we tease out the subtleties of the relationship, and show howσ

manages to avoid the instabilities ofϕ. In addition, we compute the spectrum of the Jacobi
operator ofϕ, correcting errors of [15] (see Remark 3.12). Finally, in Section 4, we cap-off
the discussion ofJ v

σ with the following much more powerful global result.

Main theorem. The absolute minimum ofEv over all unit vector fields onS3 is 2π2, which
is achieved at, and only at, the Hopf vector fields.

This theorem provides an affirmative resolution of a conjecture in [18], and establishes a
complete analogy between the behaviour of the energy and volume functionals on the space
of unit vector fields onS3 [9]. Our proof of the Main theorem utilizes a Rigidity theorem for
shear-free geodesic congruences onS3, which follows from the work of Baird and Wood
(combining results of [2,3]) on harmonic morphisms. However, we take the opportunity to
provide a direct proof of this Rigidity theorem.

2. The spectrum of the vertical Jacobi operator

We refer to the following well-known diffeomorphism ofS3 with SU(2) as thePauli
correspondence:

(z1, z2) ↔
(
z1 −z2

z2 z1

)
, z1, z2 ∈ C, |z1|2 + |z2|2 = 1,

and the following basis of the Lie algebrasu(2) as thePauli basis:

P1 =
(

i 0
0 −i

)
, P2 =

(
0 i
i 0

)
, P3 =

(
0 −1
1 0

)
.

The Pauli basis satisfies the commutation relations:

[Pj , Pk] = 2εjklPl, (2.1)

whereεjkl is the totally antisymmetric symbol. There exists a unique bi-invariant metric
on SU(2) rendering the Pauli basis orthonormal, and with respect to this metric the Pauli
correspondence is an isometry. Furthermore, with respect to the orientation ofSU(2) deter-
mined by the Pauli basis, the Pauli correspondence preserves the orientation ofS3 induced
from the standard orientation ofR4 by the outward-pointing normal. The Hopf vector fields
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on S3 are precisely the Pauli-preimages of unit vector fields onSU(2) which are either
left-invariant or right-invariant.

Let σj denote the Pauli-preimage of the left-invariant vector field onSU(2) generated by
Pj . Then(σ1, σ2, σ3) is a positively oriented global orthonormal frame onS3, with σ1 = σ ,
the canonical Hopf vector field. It follows from left-invariance (see Lemma 3.2) that

∇σj σk = 1
2[σj , σk] = εjklσl by (2.1). (2.2)

It follows from (2.2) that

|∇σ |2 = 2. (2.3)

In order to compute the spectrum ofJ v
σ , we first rewrite this operator using the triad basis

{σj }, noting that anyα ∈ Vσ can be written asα = f2σ2 + f3σ3, wheref2 andf3 are
smooth real-valued functions onS3. The following fact will be useful.

Lemma 2.1. If X (resp. λ) is any smooth vector field(resp. function) on a Riemannian
manifold, then

∇∗∇(λX) = (1λ)X + λ∇∗∇X − 2∇gradλX,

where1 is the Laplace–Beltrami operator acting on functions.

Proposition 2.2. Let

α = f2σ2 + f3σ3, (2.4)

wheref2 andf3 are smooth real functions onS3. Then

J v
σ (α) = (1f2 + 2∇σ f3)σ2 + (1f3 − 2∇σ f2)σ3.

Proof. It follows from (1.4) and (2.3) that

J v
σ (α) = ∇∗∇α − 2α − 2〈∇σ,∇α〉σ. (2.5)

We first compute(∇∗∇ − 2)α. By Lemma 2.1

∇∗∇α = (1f2)σ2 + (1f3)σ3 + f2∇∗∇σ2 + f3∇∗∇σ3 − 2(∇gradf2σ2 + ∇gradf3σ3).

Sinceσj is a Killing field, we have

∇∗∇σj = Ric(σj ) = 2σj .

(This can also be deduced from Eq. (2.2). Furthermore, by (2.2):

∇gradf2σ2 =
3∑
j=1

(∇σj f2)∇σj σ2 =
∑
j,l

εj2l (∇σj f2)σl = (∇σ1f2)σ3 − (∇σ3f2)σ1,

∇gradf3σ3 =
∑
j,l

εj3l (∇σj f3)σl = (∇σ2f3)σ1 − (∇σ1f3)σ2.
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Therefore

(∇∗∇ − 2)α = (1f2)σ2 + (1f3)σ3 − 2((∇σ f2)σ3

−(∇σ f3)σ2)+ 2(∇σ3f2 − ∇σ2f3)σ. (2.6)

Next, we compute〈∇σ,∇α〉. By (2.2) again

〈∇σ,∇α〉 =
3∑
j=1

〈∇σj σ,∇σj α〉 = −〈σ3,∇σ2α〉 + 〈σ2,∇σ3α〉.

Hence

〈∇σ,∇α〉 = ∇σ3f2 − ∇σ2f3.

Therefore the term proportional toσ in (2.6) is cancelled by−2〈∇σ,∇α〉σ in (2.5) as it
should. Hence, the result follows. �

Now, let us define a mapψ from the space of smooth vector fields pointwise orthogonal
to σ to the space of smooth complex functions onS3 by

ψ : α → f = f2 + if3.

The space ofC-valued functions onS3 is regarded as a real Hilbert space, using the inner
product

(f, g) = Re
∫
S3
f ḡ dx,

wheref̄ is the complex conjugate off . Then the proposition implies that

J v
σ = ψ−1 ◦3 ◦ ψ,

where the map3 on the space of complex functions is defined by

3(f ) = 1f − 2i∇σ f.
Hence, the spectrum ofJ v

σ is identical to that of3. Since the operators1 and∇σ commute,
the complete set of eigenfunctions of3 can be chosen to be simultaneous eigenfunctions
of 1 and∇σ . The eigenvalues of1 aren(n+ 2), n = 0,1,2, . . ., and eigenfunctions cor-
responding to eachn form the representation(1

2n,
1
2n) of SU(2)⊗ SU(2), with multiplicity

2(n + 1)2. (Here, since the functionsf and if are linearly independent, the multiplicity
is doubled compared to the usual case.) It is known that the eigenvalues of i∇σ on scalar
functions are−n,−n + 2, . . . , n − 2, n, each with multiplicity 2(n + 1). Thus, we have
established the following theorem.

Theorem 2.3. The eigenvalues ofJ v
σ , whereσ is a Hopf vector field, aren(n + 2) + 2k,

where n is a non-negative integer andk = −n,−n + 2, . . . , n − 2, n. The multiplicity of
each eigenvalue for given n and k is2(n+ 1).
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We note that two eigenvalues with differentn andk are distinct. In fact, the eigenvalue
sequence is a splice of the two arithmetic progressions 4k,4k + 1, k = 0,1,2, . . . . Since
the eigenvalues are all non-negative, it follows thatJ v

σ is non-negative. The zero eigenvalue
corresponds tof = const. Thus,J v

σ (α) = 0 if and only ifα is a linear combination ofσ2

andσ3; in particular,α is left-invariant.

Remark 2.4. The Jacobi operatorJ for the identity map onS3 is [14]:

J = ∇∗∇ − 2 = 1− 4

by application of a Weitzenböck formula, where1 is the Hodge–de Rham Laplacian acting
on the entire space of1-forms/vector fields. The eigenvalues of1 fall into two sequences:

λk = (k + 1)(k + 3), λ̃k = (k + 2)2, k = 0,1,2, . . .

with corresponding multiplicities:

µk = (k + 2)2, µ̃k = 2(k + 1)(k + 3), k = 0,1,2, . . . .

(The eigenvectors ofλk are exact1-forms, whereas those ofλ̃k are co-exact; see[4] with
corrections of[7], or [12]). Therefore the eigenvalues ofJ are

k2 + 4k − 1, k2 + 4k, k = 0,1,2, . . .

with multiplicitiesµk, µ̃k, respectively. Notice that these two sequences are qualitatively
quite different from those of Theorem2.3.

The non-negativity ofJ v
σ was established in a slightly different manner in [18] using the

Bochner–Yano integral formula [5] on any compact manifold(M, g):∫
M

(|∇X|2 − Ric(X,X))dx =
∫
M

(1
2|LXg|2 − (divX)2)dx. (2.7)

This was used to rewrite (1.3) onS3 as

Hv
σ (α, α) =

∫
S3
(1

2|Lαg|2 − (div α)2)dx (2.8)

if σ is a Hopf vector field. Then, the expansion (2.4) was used to show the non-negativity
of Hv

σ , and to derive the condition onα for Hv
σ (α, α) = 0. In fact, the non-negativity of

the integrandof (2.8) holds with a weaker condition onσ . We conclude this section by
establishing this fact. (A similar inequality will be used in Section 4 to prove the Main
theorem, mentioned in Section 1.)

Proposition 2.5 (Linear inequality).Let σ be a unit vector field on an n-dimensional
Riemannian manifold(M, g). If the integral curves ofσ are geodesics, then for any vector
fieldα pointwise orthogonal toσ we have

(n− 1)|Lαg|2 ≥ 4(div α)2.



A. Higuchi et al. / Journal of Geometry and Physics 37 (2001) 137–155 143

Proof. Recall first that

LXg(Y,Z) = 〈∇YX,Z〉 + 〈Y,∇ZX〉 (2.9)

for any vector fieldX. It follows that

TrLXg = 2divX. (2.10)

Letα1, . . . , αn−1 be local vector fields such that(α1, . . . , αn−1, σ ) is an orthonormal moving
frame onM. It follows from (2.10) that

(n− 1)|LXg|2 − 4(divX)2 = (n− 1)|LXg|2 − (TrLXg)
2

= (n− 2)(LXg(σ, σ )
2 +

∑
i

LXg(αi, αi)
2)

+2(n− 1)
∑
i

LXg(σ, αi)
2 + (n− 1)

∑
i 6=j
LXg(αi, αj )

2

−2
∑
i

LXg(σ, σ )LXg(αi, αi)

−2
∑
i<j

LXg(αi, αi)LXg(αj , αj ). (2.11)

Since the integral curves ofσ are geodesics, it follows from (2.9) that

Lαg(σ, σ ) = 2〈∇σ α, σ 〉 = −2〈α,∇σ σ 〉 = 0. (2.12)

Therefore ifX = α then (2.11) collapses to

(n− 1)|LXg|2 − 4(divX)2 = 2(n− 1)LXg(σ, αi)
2 + (n− 1)

∑
i 6=j
LXg(αi, αj )

2

+
∑
i<j

(LXg(αi, αi)− LXg(αj , αj ))
2 ≥ 0. (2.13)

�

Note that the non-negativity of the integrand in (2.8) follows from the casen = 3 of
this proposition. Although there are many unit vector fields onS3 whose integral curves
are geodesics [8], apart from the Hopf vector fields we do not know how many of them are
harmonic sections ofUS3. In fact, this is a very interesting open question.

3. Comparison with the Hopf map

We first note an extremely simple relationship between the three-dimensional canonical
Hopf vector fieldσ and the Hopf mapϕ : S3 → S2. Recall that on any Lie groupG there
is the Maurer–Cartan formµ, with values in the Lie algebra:

µ(X) = g−1 ·X ∀X ∈ TgG, ∀g ∈ G.
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Let us denote byη the right-invariant analogue

η(X) = X · g−1.

Throughout Section 3 we identifyS3 with SU(2) via the Pauli correspondence, as described
at the beginning of Section 2. Thenσ is left-invariant; thereforeµ ◦ σ = const. (the Pauli
matrixP1). On the other hand, we have the following proposition.

Proposition 3.1. There exists an isometric identification ofS2 with the unit sphere insu(2)
such thatη ◦ σ = ϕ, the Hopf mapS3 → S2.

Proof. If the Pauli-image of(z1, z2) ∈ S3 is denoted byγ , ande denotes the identity, then

η ◦ σ(γ ) = γ · σ(e) · γ−1 =
(
z1 −z2

z2 z1

) (
i 0
0 −i

) (
z1 z2

−z2 z1

)

=
(

i|z1|2 − i|z2|2 2iz1z2

2iz1z2 i|z2|2 − i|z1|2
)

=(|z1|2−|z2|2)P1+2 Re(z1z2)P2 + 2 Im(z1z2)P3. (3.1)

On the other hand, by the Hopf map we understand the composition of the Hopf fibration
π : S3 → CP 1; (z1, z2) 7→ (z1 : z2) (homogeneous coordinates) with the standard
isomorphism ofCP 1 with the unit sphere inR3. This isomorphism admits the following
local description: on the open subset ofCP 1 wherez1 6= 0, the complex chart(z1 : z2) 7→
z2/z1 is followed by the inverse of stereographic projection from the north pole onto the
equatorial plane. Thus

ϕ(z1, z2) = (2z1z2, |z2|2 − |z1|2) ∈ C× R ∼= R3.

But by (3.1) this is precisely the mapS3 → S2 obtained by taking the coordinates ofη ◦ σ
with respect to the basis(P2, P3,−P1) of su(2). �

Note. The most natural identification of the unit sphere insu(2)with S2 (viz. the restriction
of the linear isomorphism which sends the Pauli basis(P1, P2, P3) to the standard basis of
R

3) is not the identification asserted by Proposition 3.1; rather, the two differ by a rotary
reflection ofS2.

At first glance, the fact thatσ differs fromϕ ‘only’ by right translation suggests a complete
equivalence between the variational theories ofEv(σ ) andE(ϕ). Of course, in the light
of Section 2 we know this is not the case, sinceϕ is E-unstable. A closer examination
of the energy functionals (see Proposition 3.4), and Jacobi operators (see Proposition 3.7)
reveals a more complicated scenario, which resolves the issue. Recall first the following
characterizations of covariant differentiation in Lie groups [10].

Lemma 3.2. For any Lie group with bi-invariant metric, the Levi–Civita connection may
be characterized in either of the following two ways:
1. µ(∇XY) = d(µY )(X)+ 1

2[µX,µY ].
2. η(∇XY) = d(ηY )(X)− 1

2[ηX, ηY ].
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Lemma 3.3. If Y is a vector field on any Lie group with bi-invariant metric, then

|d(ηY )(X)|2 = 2|∇XY |2 − | d(µY )(X)|2 + 1
2|[µX,µY ]|2.

In particular, onS3 ∼= SU(2) we have

|d(ηY )|2 = 4|Y |2 + 2|∇Y |2 − |d(µY )|2.

Proof. It follows from Lemma 3.2(2) and the bi-invariance of the metric that

|d(ηY )(X)|2 = |∇XY |2 + 〈[ηX, ηY ], η(∇XY)〉 + 1
4|[ηX, ηY ]|2

= |∇XY |2 + 〈[µX,µY ], µ(∇XY)〉 + 1
4|[µX,µY ]|2.

Now use the algebraic fact that ifa, b, c are vectors in any inner product space, with
a = b + c, then

2〈a, c〉 = |a|2 − |b|2 + |c|2.
Lemma 3.2(1) permits the choice

a = µ(∇XY), b = d(µY )(X), c = 1
2[µX,µY ]

and the general identity follows. This identity implies

|d(ηY )|2 = 2|∇Y |2 − |d(µY )|2 + 1
2

∑
j

|[µEj , µY ]|2,

where{Ej } is any orthonormal tangent frame. OnSU(2), let{Ej } be the global left-invariant
orthonormal frame{σj }, and writeY = Y kσk (summation convention). By the commutation
relations (2.1):∑

j

|[µEj , µY ]|2 =
∑
j,k

|[Pj , Y kPk]|2 =
∑
j,k,l

4|εjklY
kPl |2 = 8

∑
k

(Y k)2 = 8|Y |2. �

Remark. It follows from Proposition3.1and Lemma3.3 (takingY = σ ) that

|dϕ|2 = 4 + 2|∇σ |2 = 8

and we recover the familiar fact that the Hopf mapϕ : S3 → S2 is an ‘eigenmap’ with
eigenvalue8 [6].

Proposition 3.4. Letσt be any variation of the Hopf vector field onS3 through unit vector
fields, and letϕt = η ◦ σt be the corresponding variation of the Hopf map(cf. Proposition
3.1).Then

E(ϕt ) = 4π2 + 2Ev(σt )− E(µ ◦ σt ).

Proof. Integrate Lemma 3.3 withY = σt , recalling that|dvσt |2 = |∇σt |2 (see [17]), and
S3 has volume 2π2. �
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It follows from Proposition 3.4 that ifσt is Ev-decreasing, thenϕt is E-decreasing.
However, the converse is not necessarily true. Indeed, since Proposition 3.4 tells us thatEv

is essentially the average of the energies of the right- and left-translates, it is conceivable that
anyE-decreasing variation of the right-translateϕ of σ is compensated by anE-increasing
variation of the left-translate. Our aim is to show that this is indeed the case.

Before proceeding further, we make some simple observations. Let〈σ 〉 denote the line
subbundle ofTS3 generated byσ . Then〈σ 〉 = ker dϕ. ThereforeVσ is precisely the space of
smoothϕ-horizontalvector fields onS3. This terminology will be very useful. For example,
the covariant derivative ofσ may be written as follows:

∇Xσ =
{

0 if X isϕ-vertical,

iX if X isϕ-horizontal.
(3.2)

The space ofL2 variation fields forϕ admits the followingL2-orthogonal decomposition

Nϕ ⊕ Zϕ ⊕ Pϕ,
whereNϕ (resp.Pϕ) is the direct sum of the negative (resp. positive) eigenspaces of the
Jacobi operatorJϕ ofϕ (see [14]), andZϕ is the kernel ofJϕ . General elliptic theory guaran-
tees thatNϕ andZϕ are finite-dimensional, and that all their elements are smooth sections
(of the pullback bundleϕ∗TS2). The dimensions ofNϕ andZϕ were computed in [15]
(modulo a few errors; see Remark 3.12), from which the following facts may be deduced.

(A) Nϕ is four-dimensional; it comprises variation fields of the form dϕ(0), where0 is a
conformal gradient field onS3. (By a conformal gradient field on a sphereSn we mean the
spherical gradient of the restriction of a linear functional on the ambient Euclidean space
R
n+1.) LetGσ denote the subspace ofVσ comprising theϕ-horizontal components of confor-

mal gradient fields onS3 (no conformal gradient field isϕ-horizontal). ThenNϕ = dϕ(Gσ ).
(B) Zϕ is eight-dimensional; it is generated by variation fields of the form dϕ(Z), where

Z is an infinitesimal isometry ofS3, and of the formC(ϕ) whereC is a conformal vector
field on S2. The Lie algebraI of infinitesimal isometries ofS3 is six-dimensional; it is
generated by the vector fields onSU(2) which are either left- or right-invariant. However,
the fibres ofϕ are invariant under the flow of the left-invariant vector fieldσ , so dϕ(I)
is actually five-dimensional. The Lie algebraC of conformal vector fields onS2 is also
six-dimensional. We may writeC(ϕ) = dϕ(C̃) whereC̃ is theϕ-horizontal lift of C. If
C is an infinitesimal isometry ofS2 thenC̃ is an infinitesimal isometry ofS3 (in fact, a
right-invariant vector field), so in this caseC(ϕ) ∈ dϕ(I). However, ifC is a conformal
gradient field ofS2 then the variation fieldsC(ϕ) constitute a three-dimensional subspace
of C(ϕ) which is complementary to dϕ(I) in Zϕ . (Note thatC̃ is not a conformal field on
S3, unlessC is an infinitesimal isometry.) If̃C denotes the six-dimensional subspace ofVσ
comprising theϕ-horizontal lifts of elements ofC, and an eight-dimensional subspaceFσ
of Vσ is defined by

Fσ = C̃⊕ Rσ2 ⊕ Rσ3, (3.3)

then it follows thatZϕ = dϕ(Fσ ).
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The space ofL2 variation fields forσ also decomposes as anL2-orthogonal direct sum:

Nσ ⊕ Zσ ⊕ Pσ ,
whereNσ (resp.Pσ ) is the direct sum of the negative (resp. positive) eigenspaces ofJ v

σ , and
Zσ is the kernel ofJ v

σ . We would like to see how the subspacesFσ andGσ corresponding
to low spectral frequencies ofJϕ relate to the eigenspaces ofJ v

σ (see Proposition 3.8);
when used in conjunction with our energy formula (Proposition 3.4), this will enable us to
deduce thatNσ is trivial. We will derive this relationship by comparing the Jacobi operators
Jϕ andJ v

σ (see Proposition 3.7).
Recall that the Jacobi operatorJf for an arbitrary harmonic mappingf of Riemannian

manifolds is given by [14]:

Jf (w) = ∇∗∇w − Ricf (w),

wherew is any variation field forf , and

Ricf (w) = TrR(w,df )df.

If the domain off is a sphereSm+1, and the variation field is of the formw = df (X)
whereX is a vector field onSm+1, then application of a Weitzenböck formula yields [19]:

Jf (w) = df (∇∗∇X − mX)− 2
∑
j

∇ df (Ej ,∇EjX), (3.4)

where{Ej } is any local orthonormal tangent frame inSm+1. The term∇ df is sometimes
referred to as thesecond fundamental formof f ; whenf = ϕ it can be computed using
standard results on Riemannian submersions.

Lemma 3.5. Letα, β (resp.V,W ) beϕ-horizontal(resp. ϕ-vertical) tangent vectors ofS3.
Then
1. ∇dϕ(α, β) = 0,
2. ∇dϕ(V,W) = 0,
3. 〈∇dϕ(α, V ),dϕ(β)〉 = 2〈V, [α, β]〉.
Proof. The map1

2ϕ is a Riemannian submersion. (Bykϕ for any k ∈ R+ we mean the
mapping onto the 2-sphere of radiusk obtained by scalar multiplication in ambientR3.)
Then (1) is an identity for all Riemannian submersions, (2) follows from the fact thatϕ has
totally geodesic fibres, and (3) is a rescaling of the identity

〈∇dπ(α, V ),dπ(β)〉 = 1
2〈V, [α, β]〉

for any Riemannian submersionπ . (Standard results on the second fundamental form of a
Riemannian submersion may be found in [1, Chapter 9], [11,13,16].) �

Let J denote the standard complex structure on the unit sphereS2, characterized by the
condition thatϕ is ‘horizontally homothetically holomorphic’:

dϕ(iα) = 2Jdϕ(α), (3.5)

for all ϕ-horizontal vectorsα.
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Lemma 3.6. For all vector fields X,Y onS3, we have

∇dϕ(X, Y ) = −2Jdϕ(〈σ,X〉Y + 〈σ, Y 〉X).

Proof. Note first that ifα, β areϕ-horizontal then:

〈σ, [α, β]〉 = 〈σ,∇αβ − ∇βα〉 = −〈∇ασ, β〉 + 〈∇βσ, α〉 = −2〈iα, β〉 by (3.2).

If {βj : j = 1,2} is anyϕ-horizontal orthonormal frame, then{1
2dϕ(βj )} is an orthonormal

frame ofS2, and it follows from Lemma 3.5 and (3.5) that

∇dϕ(σ, α) = 1
4〈∇dϕ(σ, α),dϕ(βj )〉 dϕ(βj ) = 1

2〈σ, [α, βj ]〉 dϕ(βj )

= −〈iα, βj 〉 dϕ(βj ) = −dϕ(iα) = −2Jdϕ(α). (3.6)

Now suppose thatα, β are theϕ-horizontal components ofX, Y , respectively:

X = α + 〈X, σ 〉σ, Y = β + 〈Y, σ 〉σ.
It follows from Lemma 3.5 that:

∇dϕ(X, Y ) = 〈X, σ 〉∇dϕ(σ, β)+ 〈Y, σ 〉∇dϕ(α, σ )

= −2〈σ,X〉Jdϕ(β)− 2〈σ, Y 〉Jdϕ(α) by (3.6)

= −2Jdϕ(〈σ,X〉Y + 〈σ, Y 〉X). �

Proposition 3.7. Letα be anyϕ-horizontal vector field onS3, and letw = dϕ(α). Then

Jϕ(w) = dϕ(J v
σ (α))− 2w + 4Jdϕ(∇σ α).

Proof. It follows from (3.4) and (2.5) that

Jϕ(w) = dϕ(J v
σ (α))− 2

∑
j

∇dϕ(Ej ,∇Ej α).

By Lemma 3.6 (applying the summation convention):

−2∇dϕ(Ej ,∇Ej α) = 4Jdϕ(〈Ej , σ 〉∇Ej α + 〈∇Ej α, σ 〉Ej)
= 4Jdϕ(∇σ α − 〈α,∇Ej σ 〉Ej) = 4Jdϕ(iα + ∇σ α) by (3.2)

= −2dϕ(α)+ 4Jdϕ(∇σ α) by (3.5). �

Proposition 3.8.
1. Fσ andGσ are complex subspaces ofVσ .
2. Fσ ⊂ Zσ ⊕ Pσ .
3. Gσ ⊂ Pσ .

Note. Since theϕ-horizontal distribution is a complex vector bundle,Vσ is a complex
vector space.
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Proof.
1. It was shown in [18] that iGσ = Gσ . On the other hand,C may be viewed as the Lie

algebra of holomorphic vector fields on the Riemann sphere, and is therefore a complex
Lie algebra. It follows from (3.5) that iC̃ = C̃. Furthermore, iσ2 = −σ3, so the subspace
Rσ2 ⊕ Rσ3 is also complex. It therefore follows from (3.3) that iFσ = Fσ .

2. If α is aϕ-basic vector field onS3 (i.e. aϕ-horizontal field which projects toS2), then
[σ, α] is ϕ-adapted to the zero vector field onS2, and henceϕ-vertical. Therefore

dϕ(∇σ α) = dϕ(∇ασ ) = dϕ(iα).

If in addition dϕ(α) is a Jacobi field forϕ then Proposition 3.7 reads:

dϕ(J v
σ (α)) = 2dϕ(α)− 4Jdϕ(iα) = 4dϕ(α) by (3.2),

which impliesJ v
σ (α) = 4α. In particular, this shows thatC̃ ⊂ Pσ . On the other hand, if

α is any left-invariantϕ-horizontal vector field thenJ v
σ (α) = 0, since any such vector

field is Hopf (see also Proposition 2.2, withf2 andf3 constant).
3. It was shown in [18] that every element ofGσ is an eigenvector ofJ v

σ with eigenvalue 1.
(This can also be seen from Proposition 3.7, since the variation fieldw = dϕ(α) is a−1
eigenvector forJϕ , see [19], and∇σ α isϕ-vertical. In fact, sinceGσ is four-dimensional,
it follows from Theorem 2.3 thatGσ is the entire eigenspace with eigenvalue 1).

�

A variationσt of σ through unit vector fields produces a variationϕt = η◦σt of the Hopf
map, by Proposition 3.1. However, as noted in (A) and (B) above, the most natural variations
of ϕ with variation fields inNϕ or Zϕ are of the formϕ ◦ ψt , where{ψt } is the flow of a
(ϕ-horizontal) vector field onS3. In order to play off Proposition 3.8 against Proposition 3.4
we need to relate the variation fields of these two types of variation (see Proposition 3.11).

Lemma 3.9. If α is anyϕ-horizontal vector field onS3 thendϕ(α) = 2η(iα).

Proof. It follows from Lemma 3.2(2), withY = σ , and Proposition 3.1 that

dϕ(α) = η(∇ασ )+ 1
2Ad(g)[µ ◦ α, P1].

Write α = f2σ2 + f3σ3, so thatµ ◦ α = f2P2 + f3P3. The commutation relations (2.1)
yield

[µ ◦ α, P1] = [f2P2 + f3P3, P1] = 2f3P2 − 2f2P3 = 2µ(iα).

Using (3.2), it follows that

dϕ(α) = η(iα)+ Ad(g)µ(iα) = 2η(iα). �

Lemma 3.10. If K is the connection map for any linear connection on a Lie group G, then

dη(V ) = η(KV) for all verticalV ∈ T (TG).
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Proof. Let g ∈ G, andX, Y ∈ TgG. SupposeV is the ‘vertical lift’ of Y atX:

V = d

dt

∣∣∣∣
t=0

(X + tY).

ThenKV = Y , and thereforeη(KV) = Y · g−1. On the other hand,

dη(V ) = d

dt

∣∣∣∣
t=0

((X + tY) · g−1) = d

dt

∣∣∣∣
t=0

(X · g−1 + tY · g−1) = Y · g−1. �

Proposition 3.11. Let σt be a variation of the canonical Hopf vector field onS3 through
unit vector fields, with variation fieldα. Define two variations of the Hopf mapϕ as follows:

ϕt = η ◦ σt and 8t = ϕ ◦ ψt ,
where{ψt : t ∈ R} is the flow of the vector fieldX = −iα on S3. If w (resp. W) is the
variation field ofϕt (resp.8t ) thenW = 2w.

Proof. Let V denote the vertical lift ofα into the tangent bundle ofTS3. Thus, for each
x ∈ S3, V (σ(x)) is the element ofTσ(x)TS3 tangent to the curveσt (x) in TxS3 at t = 0.
Furthermore,α = KV, by a characteristic property of connection maps. By Lemma 3.10,
the variation field forϕt is

w = dη(V ) = η(KV) = η(α).

On the other hand, by Lemma 3.9:

W = dϕ(X) = −dϕ(iα) = 2η(α). �

To show thatNσ is trivial, we argue by contradiction. Suppose thatσt is a variation ofσ
through unit vector fields, with variation fieldα a non-trivial negative eigenvector ofJ v

σ .
It follows from parts (2) and (3) of Proposition 3.8 thatα is L2-orthogonal toFσ ⊕ Gσ .
Hence, by part (1) of Proposition 3.8,X = −iα is alsoL2-orthogonal toFσ ⊕Gσ . Therefore
dϕ(X) isL2-orthogonal toZϕ⊕Nϕ , since elements ofFσ andGσ areϕ-horizontal, andϕ is
horizontally homothetic. Now dϕ(X) is the variation fieldW for the variation8t = ϕ ◦ψt
of ϕ, where{ψt } is the flow ofX. SinceW ∈ Pϕ , it follows from Proposition 3.11 that
w ∈ Pϕ also, wherew is the variation field forϕt = η◦σt . Therefore, by the second variation
formula for harmonic maps,ϕt isE-increasing for small|t |. Howeverσt isEv-decreasing
in a neighbourhood oft = 0, and it therefore follows from Proposition 3.4 thatϕt is
E-decreasing.

Remark 3.12. The energy formula(Proposition3.4) may be used to compute the spec-
trum of the Jacobi operatorJϕ of the Hopf map, thereby correcting errors of[15]. Define
E1(σt ) = E(η ◦σt ) andE2(σt ) = E(µ◦σt ), and letJ 1

σ andJ 2
σ denote the corresponding

Jacobi operators at the Hopf vector fieldσ ; note from Proposition3.1 thatJ 1
σ is conjugate

toJϕ . It follows from Proposition3.4 that

J 1
σ = 2J v

σ − J 2
σ .
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Write α ∈ Vσ asα = f2σ2 + f3σ3, and defineψ : α 7→ f = f2 + if3, as in Section
2. Then f is a variation field for the constant mapµ ◦ σ , whose Jacobi operator is the
Laplace–Beltrami operator

ψ ◦ J 2
σ ◦ ψ−1(f ) = 1f.

Therefore it follows from Proposition2.2 that

ψ ◦ J 1
σ ◦ ψ−1(f ) = 2(1f − 2i ∇σ f )−1f = 1f − 4i ∇σ f.

By arguing as in the proof of Theorem2.3, it follows that the eigenvalues ofJϕ aren(n+
2) + 4k, where n is a non-negative integer andk = −n,−n + 2, . . . , n − 2, n, with
multiplicity 2(n+1). In particular, the only negative eigenvalue isn = 1, k = −1; thusNϕ
is four-dimensional. Furthermore, the only possibilities for eigenvalue zero aren = 0, k = 0
andn = 2, k = −2.The multiplicity of the former is2,and that of the latter is2(2+1) = 6;
thusZϕ is indeed eight-dimensional.

4. Proof of the Main theorem

First, recall that a vector fieldX on a Riemannian manifold(M, g) is said to define a
conformal foliation, or shear-free congruence, if

LXg(A,B) = λg(A,B) (4.1)

for all vector fieldsA,B pointwise orthogonal toX, whereλ : M → R is a smooth
function. (It follows from (2.10) that(n − 1)λ = 2 divσ , wheren is the dimension of
M.) If in addition the integral curves ofX are (possibly reparametrized) geodesics, then
X defines aconformal geodesic foliation, or shear-free geodesic congruence. Such vector
fields appear naturally in the following non-linear version of Proposition 2.5.

Proposition 4.1(Non-linear inequality).Letσ be a unit vector field on an n-dimensional
Riemannian manifold. Then

(n− 1)|Lσg|2 ≥ 4(div σ)2

with equality if and only ifσ is a shear-free geodesic congruence.

Proof. The argument used to derive this inequality is almost identical to that of Proposition
2.5; however, in place of identity (2.12), Eq. (2.9) may be used to derive

Lσg(σ, σ ) = 2〈∇σ σ, σ 〉 = σ · |σ |2 = 0.

(Note that it is not necessary to assume that the integral curves ofσ are geodesics.) Thus
Eq. (2.13) holds withX = σ .

Sinceσ has constant length, it follows from (2.9) that

Lσg(σ, αi) = 〈∇σ σ, αi〉,
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so the vanishing of these Lie derivatives implies∇σ σ = 0. On the other hand, the vanishing
of the remaining Lie derivatives in (2.13) implies

Lσg(α, β) = λ g(α, β)

for all α, β orthogonal toσ , whereλ : M → R is a smooth function. Thus, equality occurs
only whenσ defines a conformal geodesic foliation. �

Our Main theorem can now be proved by using the Bochner–Yano integral formula (2.7)
and the following consequence of [2,3].

Rigidity theorem. A unit vector fieldσ is a shear-free geodesic congruence onS3 if and
only if σ is a Hopf vector field.

Note that the “if ” part is obvious. We shall give a direct proof of this theorem later for
completeness. Let us first prove our Main theorem using this result.

Main theorem. The absolute minimum ofEv over all unit vector fields onS3 is2π2, which
is achieved at, and only at, the Hopf vector fields.

Proof. By the Bochner–Yano integral formula (2.7), we find onS3 that

Ev(σ ) = 1

4

∫
S3
(|Lσg|2 − 2(div σ)2)dx + 2π2.

We have used Ric(σ, σ ) = 2 and the fact that the volume ofS3 is 2π2. By Proposition 4.1
with n = 3, we immediately haveEv(σ ) ≥ 2π2 and that the minimum is achieved if and
only if σ is a shear-free geodesic congruence. Then, the theorem follows immediately from
the Rigidity theorem. �

We conclude this paper by proving the “only if” part of the Rigidity theorem as promised.
We first prove the following lemma.

Lemma 4.2. Suppose thatσ is a shear-free congruence on a Riemannian3-manifold. Let
α, β andσ form a local orthonormal frame, and defineZ = α + iβ. Then

∇Zσ = 8Z, (4.2)

where8 : M → C is a smooth complex function.

Proof. By definition (4.1) of shear-free congruences, we obtain

〈α,∇ασ 〉 = 〈β,∇βσ 〉 = 1
2λ = µ (say)

and

〈α,∇βσ 〉 + 〈β,∇ασ 〉 = 0.



A. Higuchi et al. / Journal of Geometry and Physics 37 (2001) 137–155 153

By definingν = 〈α,∇βσ 〉 we find

∇ασ = µα − νβ, ∇βσ = µβ + να.

Then, we obtain the desired formula by letting8 = µ+ iν. �

A couple of differential equations can be derived for8 on a manifold of constant curva-
ture.

Proposition 4.3. Let σ be a shear-free geodesic congruence on a3-manifold of constant
curvature c. Then

σ ·8 = −c −82, (4.3)

Z̄ ·8 = 0, (4.4)

where8 and Z are defined in Lemma4.2.

Proof. From (4.2) we find

∇σ (∇Zσ) = (σ ·8)Z +8∇σZ. (4.5)

On the other hand, we have

∇σ (∇Zσ) = R(σ,Z)σ + ∇Z(∇σ σ )+ ∇∇σ Zσ − ∇∇Zσ σ
= c(〈Z, σ 〉σ − Z)+ ∇Z(∇σ σ )+ ∇∇σ Zσ − ∇∇Zσ σ. (4.6)

Note that for any vectorX

X = 1
2(〈Z̄, X〉Z + 〈Z,X〉Z̄)+ 〈σ,X〉σ.

Using this formula,∇σ σ = 0 and Eq. (4.2), we find from (4.6) that

∇σ (∇Zσ) = 8∇σZ − (c +82)Z.

By comparing this with (4.5), we obtain (4.3).
Next we have

(∇Z∇Z̄ − ∇Z̄∇Z)σ = ∇Z(8̄Z̄)− ∇Z̄(8Z)
= (Z · 8̄)Z̄ + 8̄∇ZZ̄ − (Z̄ ·8)Z −8∇Z̄Z. (4.7)

On the other hand

(∇Z∇Z̄ − ∇Z̄∇Z)σ = R(Z, Z̄)σ + ∇∇ZZ̄σ − ∇∇Z̄Zσ = 8̄∇ZZ̄ −8∇Z̄Z.
By comparing this formula with (4.7) we find

(Z · 8̄)Z̄ − (Z̄ ·8)Z = 0.

By taking the inner product with12Z̄, we obtain (4.4). �
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This proposition allows us to compute the Laplacian of8, as shown in the following
lemma.

Lemma 4.4. Supposeσ is a shear-free geodesic congruence on a3-manifold of constant
curvature. Then the function8 is harmonic.

Proof. Note first that

−18 = ∇σ∇σ8+ ∇Z∇Z̄8− ∇∇ZZ̄8.

Then, using Proposition 4.3 and

∇ZZ̄ = 〈σ,∇ZZ̄〉σ + 1
2(〈Z̄,∇ZZ̄〉Z + 〈Z,∇ZZ̄〉Z̄)

= −〈∇Zσ, Z̄〉σ + 1
2〈Z,∇ZZ̄〉Z̄ = −28σ + 1

2〈Z,∇ZZ̄〉Z̄,
we find18 = 0. �

The Rigidity theorem follows from this lemma.

Proof of the rigidity theorem. SinceS3 is compact and8 is harmonic,8 is constant.
Then, from (4.3) we find8 = ±i on S3 with c = 1. Thus

∇Zσ = ±iZ, (4.8)

which implies thatσ is a Hopf vector field. This fact can be seen as follows. Eq. (4.8) can
be written as

∇ασ = ∓β, ∇βσ = ±α.
These equations, together with∇σ σ = 0 imply

Lσg(X, Y ) = 〈X,∇Y σ 〉 + 〈Y,∇Xσ 〉 = 0

for any vector fieldsX andY . Thus,σ is a Killing vector field of unit length, hence a Hopf
vector field. �
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